Нужен ли ноль для трехфазного двигателя?

МИСТЕР ЭЛЕКТРИК СЕРГИЕВ ПОСАД

Каталог статей

При подключении трёхфазного двигателя ( неважно, треугольником или звездой ) без «нулевого» провода, естественно двигатель работать будет. Но условия вашей безопасности соблюдены не будут.

К двигателю ведете только фазные провода + внутри клемной коробки или снаружи на болт — защитный проводник РЕ. Ноль не нужен, потому что нагрузка симметричная и и векторная сумма токов по фазам равна нулю, т.е токи в фазах сдвинуты на 120 градусов и при сложении их в нулевом проводе ток=0.

-по условиям надежности: по защитному проводнику не должен протекать рабочий ток.
-для того, что бы работали УЗО.
-чтобы избежать огромных токов утечек по оплеткам кабелей, трубам и прочим конструкциям зданий. Как следствие уменьшение электромагнитных полей и наводок на измерительное и информационное оборудование.
-ПУЭ 1.7.135. Когда нулевой рабочий и нулевой защитный проводники разделены начиная с какой-либо точки электроустановки, не допускается объединять их за этой точкой по ходу распределения энергии. В месте разделения PEN-проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
-нельзя и всё .

И если кто еще не знал — чтобы изменить направление вращения трехфазного двигателя надо просто поменять местами любую пару проводов на двигателе.

из ПУЭ:
СОВМЕЩЕННЫЕ НУЛЕВЫЕ ЗАЩИТНЫЕ И НУЛЕВЫЕ РАБОЧИЕ ПРОВОДНИКИ
(PEN ПРОВОДНИКИ)
1.7.131. В многофазных цепях в системе TN для стационарно проложенных кабелей, жилы которых имеют площадь поперечного сечения не менее 10 мм2 по меди или 16 мм2 по алюминию, функции нулевого защитного (РЕ) и нулевого рабочего (N ) проводников могут быть совмещены в одном проводнике ( PEN проводник).
1.7.132. Не допускается совмещение функций нулевого защитного и нулевого рабочего проводников в цепях однофазного и постоянного тока. В качестве нулевого защитного проводника в таких цепях должен быть предусмотрен отдельный третий проводник.
7.1.36. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.
1.7.135. В месте разделения PEN проводника на нулевой защитный и нулевой рабочий проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой.

В добавлениии скажу, если вы решили подключить трехфазный двигатель в сеть 220 вольт, то надо использовать конденсатор (естественно неэлектролитический).

Для подключения звездой или треугольником, разные формулы расчета конденсатора .

Треугольник Ср= 4800 * I / U (рабочая емкость — то есть та, которая будет включена постоянно при работе электродвигателя)

Звезда Ср= 2800 * I / U

Ток написан на шильдике двигателя.

Емкость Сп (пусковая емкость — включается кнопкой только на время запуска электродвигателя и подключатся параллельно рабочей емкости) в 2. 2,5 раза больше чем рабочая Ср.

, где

Р — мощность двигателя в Вт, указанная в его паспорте;
h — кпд;
cos j — коэффициент мощности;
U -напряжение в сети, В

Потребляемый электродвигателем ток в выше приведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:

На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя по табл. 1

Таблица 1. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного двигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Минимальная емкость рабочего конденсатора Ср, мкФ 40 60 80 100 150 230
Минимальная емкость пускового конденсатора Ср, мкФ 80 120 160 200 250 300

Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток на 20. 30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, то в этом случае емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.

Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об/мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой — 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.

Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5)

Рис. 5 Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.

При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 — пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети. Кнопку «Пуск» держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме. Для остановки электродвигателя следует нажать кнопку «Стоп». В усовершенствованном пусковом устройстве по схеме рис.5, можно использовать реле типа МКУ-48 или ему подобное.

. Использование электролитических конденсаторов в схемах запуска электродвигателей.

При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки. Схема эквивалентной замены обычного бумажного дана на рис. 6

Рис. 6 Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).

Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости. Например, если в схеме для однофазно сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене, по вышеприведенной схеме, можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.

Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов.

Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.

Рис. 7 Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.

В приведенной схеме, SA1 — переключатель направления вращения двигателя, SB1 — кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 — во время работы.

Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добивается равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация. Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А. При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током, или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.

Как подключить трехфазный двигатель к сети 220 или 380 В?

Среди электрических машин, предназначенных для совершения механической работы, одними из наиболее продуктивных считаются трехфазные агрегаты. Вращение ротора осуществляется посредством одновременного воздействия магнитного потока от фазных обмоток. Что и обеспечивает одновременное усилие сразу трех моментов, пропорционально взаимодействующих друг с другом. Как можно выполнить подключение трехфазного двигателя в зависимости от их конструктивных особенностей и параметров электрической сети мы рассмотрим далее.

Общая информация

Подключение трехфазных двигателей подразумевает относительно сложную операцию, которая требует понимания процессов, протекающих в электроустановке. Для чего необходимо рассмотреть как составляющие элементы, так и их назначение.

Конструктивно трехфазные электродвигатели состоят из:

  • Статора с магнитопроводом;
  • Ротора с валом;
  • Обмоток.

В зависимости от типа двигателя встречаются модели с короткозамкнутым или фазным ротором. В одних ротор вращается только за счет электромагнитного поля, наводимого от обмоток статора, в других, вращение вала получает усилие от поля ротора при протекании тока в его обмотках. Для включения трехфазных двигателей необходимо разобраться с тем, как фазы обмоток соединяются между собой.

Схемы подключения обмоток двигателя

В трехфазных асинхронных электродвигателях применяется два варианта соединения – в звезду и треугольник. В трехфазных асинхронных электрических машинах, в зависимости от модели, можно реализовать схему:

  • Звезда;
  • Треугольник;
  • Звезда и треугольник.

Простейший способ определения возможностей конкретного асинхронного электромотора – посмотреть на шильд (металлическая пластина с техническими параметрами). На них обозначается в том числе и номинал рабочего напряжения для соответствующего соединения. Здесь может указываться обозначение только для звезды, только для треугольника или и тот и другой вариант одновременно, пример такой маркировки приведен на рисунке ниже:

Пример обозначения на шильде

Если шильд отсутствует или информация на нем стерлась, то схему подключения можно узнать, открыв блок распределения начал обмотки (БРНО). Если вы увидите 6 выводов, имеющих клеммные соединения, можно определить тип включения обмоток. Гораздо хуже, когда борно имеет только три вывода, а подключение производится внутри корпуса. В этом случае нужно разобрать трехфазный электромотор, чтобы увидеть способ соединения.

Звезда

Схема подключения трехфазного двигателя звездой предусматривает, что начало каждой обмотки объединяется в одну точку, а к их концам подключаются фазы от питающей линии. Такой тип обеспечивает значительно более плавный пуск и относительно щадящий режим работы. Однако мощность, с которой вращается ротор, в полтора раза ниже, чем при подключении треугольником. Схематически данное подключение выглядит следующим образом:

Схема подключения звезда

Как видите на рисунке, концы выводов обмоток трехфазного двигателя A2, B2, C2 соединены в один электрический узел. А к клеммам A1, B1, C1 – подключаются фазные провода, как правило, на 220 или 380 вольт.

Если рассматривать данную схему на примере борна, выглядеть оно будет так:

Соединение обмоток звездой

Треугольник

Чтобы подключить электродвигатель треугольником вам необходимо подвести конец одной обмотки к началу другой. И таким образом замкнуть обмотки в своеобразное кольцо, в точки соединения которых и подключаются выводы питающей линии. Схема соединения треугольником обеспечивает максимальный момент и усилие на валу, что особенно актуально для больших нагрузок. Однако и ток в обмотках при номинальной нагрузке также пропорционально повысится, не уже говоря о режимах перегрузки.

Поэтому включение трехфазного двигателя треугольником и требует понижения напряжения. К примеру, если одну и ту же электрическую машину можно подключить с соединением обмоток и треугольником, и звездой, то звезда будет иметь напряжение питания 380, а треугольник 220 вольт или 220 и 127 вольт соответственно. Схематически подключение обмоток треугольником будет выглядеть так:

Читайте также  Надо ли выжимать сцепление при запуске двигателя?

Схема подключения треугольник

Как видите, соединение производится от A2 к B1, от B2 к C1, от C2 к A1, в некоторых моделях электрических машин маркировка выводов может отличаться, но на крышке борна будет отображаться их принадлежность к той или иной обмотке и возможные варианты соединения между собой.

Соединение обмоток треугольником

Варианты подключения

Трехфазные двигатели имеют отличные характеристики, довольно широкий модельный ряд и применяются в самых разнообразных устройствах. Поэтому их применяют как в промышленных устройствах с трехфазным питанием, так и в бытовых однофазных электроустановках. Далее разберем оба варианта подключения электрических машин.

В однофазную сеть

Конструктивная особенность трехфазного агрегата, в отличии от однофазных асинхронных двигателей, состоит в необходимости сдвига фаз в обмотках, иначе вращения вала не будет происходить. Чтобы изменить ситуацию одну фазу разделяют для всех трех обмоток, в две из которых включаются дополнительная индуктивность и пусковая емкость. Которые и обеспечивают сдвиг тока и напряжения относительно напряжения в сети. Индуктивность позволяет осуществить сдвиг напряжения в отрицательную область до -90°, а вот однофазный конденсатор, наоборот, в положительную до +90°.

Графически функция отставания напряжения от тока будет выглядеть следующим образом:

Изменение тока и напряжения на емкости и индуктивности

Однако на практике смещение обеспечивается только емкостными элементами, которые включаются в цепь электроснабжения одной из обмоток, а две другие запускаются между фазным и нулевым проводом. Схема подключения трехфазного двигателя в однофазной цепи приведена на рисунке ниже:

Схема включения в однофазную сеть

Как видите на рисунке, от фазного провода делается отпайка, содержащая конденсаторный однофазный магазин из двух элементов, один для пуска C2, второй для постоянной работы C1. При нажатии кнопки пуска происходит одновременное замыкание контактов SA1 и SA2, но после создания достаточного момента и начала вращения SA1 отбрасывается и выводит C1 из цепи, оставляя C2. Мощность, при такой схеме включения двигателя, снижается до 30 – 50%.

Расчет конденсаторного пуска производится по формуле:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

Пусковой конденсатор используется только в нагруженном пуске, поэтому в легком запуске его можно не применять. Тогда вместо емкости пускового будет задействоваться рабочий.

В трёхфазную сеть

В трехфазной сети, несмотря на наличие необходимого типа питающего напряжения, всегда используется магнитный пускатель для приведения двигателя во вращение. Производить запуск без пускателя или контактора довольно опасно, поэтому они являются неотъемлемым элементом.

Схема включения в трехфазную сеть

На рисунке выше приведена обычная схема подключения двигателя к трехфазной сети, которая работает по такому принципу:

  • подача напряжения на двигатель от сети производится через рубильник 1.
  • далее, при включении кнопки пуска 6 осуществляется питание катушки контактора 4, которая притягивает силовые контакты пускателя 3;
  • после чего двигатель начинает вращение, а пусковая кнопка 6 шунтируется через повторитель 5;
  • для остановки трехфазного двигателя используется кнопка Стоп – 7, находящаяся в нормально замкнутом положении;
  • защита двигателя от перегрузки контролирует токовую нагрузку в сети и при возникновении угрозы размыкает контакты 2.

Данная схема может упрощаться в связи с конструктивными особенностями применяемых пускателей. Так как некоторые из них изготавливаются без повторителей, могут иметь функцию реверсирования трехфазного двигателя или выпускаться без защиты. Более детальную информацию о магнитных пускателях вы можете почерпнуть из соответствующей статьи на сайте: https://www.asutpp.ru/elektromagnitnyj-puskatel.html

Видео по теме

Подключение трехфазных двигателей

Добрый день!
Интересует тема подключения трехфазных двигателей с мощностью до1 кВТ
Как правильно провести подключение двигателя «звездой» с учетом имеющего УЗО в силовом шкафу? Как правильно заземлить двигатель и непонятно куда подключается рабочий ноль?
Где можно прочитать подробно о действии УЗО?

Тестер ПВА написал :
Как правильно провести подключение двигателя «звездой» с учетом имеющего УЗО

Обычное четырехполюсное УЗО соответствующего номинала, а провода в коробке двигателя на соответствующие клеммы. «Земляной» болт ищите на корпусе.

Не подскажете какие ГОСТ доки по подключению трехфазных двигателей 1кВТ мощности?

Тестер ПВА написал :
Не подскажете какие ГОСТ доки по подключению трехфазных двигателей 1кВТ мощности?

Так какие там могут быть ГОСТы? Все это оговаривается производителем и, как правило, любая инструкция начинается со слов, что «подключение двигателя к электросети должно производиться квалифицированным персоналом . «. Или что-то типа этого.

Тестер ПВА написал :
Добрый день!
Интересует тема подключения трехфазных двигателей с мощностью до1 кВТ
Как правильно провести подключение двигателя «звездой» с учетом имеющего УЗО в силовом шкафу? Как правильно заземлить двигатель и непонятно куда подключается рабочий ноль?
Где можно прочитать подробно о действии УЗО?

  1. добрый и Вам
    2.а после 1 кВт
    3.а какое УЗО
    4.на земляную шину
    5.на глухозаземленную/изолированную нейтраль
  2. УЗО — здеся!
    чего мастырим?

непонятно куда подключается рабочий ноль?

Трёхфазному электродвигателю РАБОЧИЙ ноль не нужен

Добрый день!
По какой схеме лучше запитать трехфазный двигатель 1 кВт по звезде или треугольником?
Прочитал что у треугоьника большой пусковой ток.

Тестер ПВА написал :
По какой схеме лучше запитать трехфазный двигатель 1 кВт по звезде или треугольником?

Зависит от напряжения в вашей сети.

Трехфазная сеть 380В

Тестер ПВА написал :
По какой схеме лучше запитать трехфазный двигатель 1 кВт по звезде или треугольником?

А что написано/нарисовано на шильдике?

ВТБ! написал :
А что написано/нарисовано на шильдике?

Наверняка звезда/треугольник и напряжение 380/220.

Тестер ПВА написал :
По какой схеме лучше запитать трехфазный двигатель

Разумеется вам надо подключать «звездой», если не хотите получить в итоге сгоревший движок.

На движке шесть клемм- т.е концы обмоток. Изначально можно собрать либо звездой либо треугольником. Все советуют по разному одни звездой другие звездой/ треугольником. Спасибо всем -буду соединять звездой.
У меня все таки вопрос — обязательно тащить рабочий ноль, подсоединять его к корпусу двигателя и заземлять там же, если провод трехфазный диной порядка 40 метров

Тестер ПВА написал :
Не подскажете какие ГОСТ доки по подключению трехфазных двигателей 1кВТ мощности?

ПУЭ Глава 5.3 «Электродвигатели и их коммутационные аппараты»
ПТЭЭП Глава 2.5 «Электродвигатели»

avmal написал :
Обычное четырехполюсное УЗО соответствующего номинала, а провода в коробке двигателя на соответствующие клеммы. «Земляной» болт ищите на корпусе

Плюс автомат и пускатель с кнопками.

Тестер ПВА написал :
Изначально можно собрать либо звездой либо треугольником. Все советуют по разному одни звездой другие звездой/ треугольником.

ВТБ! написал :
А что написано/нарисовано на шильдике?

Тестер ПВА написал :
У меня все таки вопрос — обязательно тащить рабочий ноль, подсоединять его к корпусу двигателя и заземлять там же

Обязательно «тащить» защитный ноль (в просторечье «земля») и подсоединять его к корпусу двигателя.
Во времена TN-C рабочий ноль был по совместительству и защитным и подключался к корпусу, плюс дублировался подключением корпуса к «контуру заземления».
Сейчас — ведите РЕ от шины РЕ(PEN) щитка (на корпусе) в обход УЗО. N движку не нужен и подключается на вход УЗО только для обеспечения работы кнопки «Тест», да и то, не всем моделям 4р УЗО это требуется.

Схемы подключения трехфазного электродвигателя

1. Подключение трехфазного электродвигателя – общая схема

Когда электрик устраивается работать на любое промышленное предприятие, он должен понимать, что ему придётся иметь дело с большим количеством трехфазных электродвигателей. И любой уважающий себя электрик (я не говорю о тех, кто делает проводку в квартире) должен чётко знать схему подключения трёхфазного двигателя.

Сразу приношу извинения, что в данной статье я часто контактор называю пускателем, хотя подробно объяснял уже, что пускатель и контактор – это разные вещи. Что поделать, приелось это название.

В статье пойдёт речь о схемах подключения наиболее распространенного асинхронного электродвигателя через магнитный пускатель. Но не только. Расскажу также от способах и принципах защиты двигателя от перегрева и перегрузки.

Будут рассмотрены различные схемы подключения электродвигателей , их плюсы и минусы. От простого к сложному. Схемы, которые могут быть использованы в реальной жизни, обозначены: ПРАКТИЧЕСКАЯ СХЕМА. Итак, начинаем.

Подключение трехфазного двигателя

Имеется ввиду асинхронный электродвигатель, соединение обмоток – звезда или треугольник, подключение к сети 380В.

Для работы двигателя рабочий нулевой проводник N (Neutral) не нужен, а вот защитный (PE, Protect Earth) в целях безопасности должен быть подключен обязательно.

По принципам построения сетей 380В я уже подробно писал в статьях про трехфазный счетчик и реле напряжения.

В самом общем случае схема будет выглядеть таким образом, как показано в начале статьи. Действительно, почему бы двигатель не включить как обычную лампочку, только выключатель будет “трехклавишный”?

2. Подключение двигателя через рубильник или выключатель

Но даже лампочку никто не включает просто так, сеть освещения и вообще любая нагрузка всегда включается только через защитные автоматы.

Подробнее про замену и установку автоматических выключателей – здесь. А про их параметры и выбор – здесь.

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Напомню, чтобы ориентировочно выбрать (оценить) необходимый тепловой ток уставки тепловой защиты, надо номинальную мощность трехфазного двигателя (указана на шильдике) умножить на 2.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Она прекрасно работает, так же, как по многу лет может работать скрутка меди с алюминием. И в один “прекрасный” день сгорит скрутка. Или сгорит двигатель.

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.
Читайте также  Как правильно мерить уровень масла в двигателе?

Эти недостатки можно устранить, в схемах ниже будет показано как.

Подключение трехфазного двигателя через ручной пускатель

4. Подключение двигателя через ручной пускатель. ПРАКТИЧЕСКАЯ СХЕМА

Поскольку у двигателей обычно большой пусковой ток, то у автоматов защиты двигателей (мотор-автоматов), как правило, характеристика тепловой защиты типа D. Т.е. он выдерживает кратковременные (пусковые) перегрузки примерно в 10 раз больше от номинала.

Ручной пускатель двигателя с дополнительным контрольным контактом.

Вот что у него на боковой стенке:

Автомат защиты двигателя – характеристики на боковой стенке

Ток уставки (тепловой) – от 17 до 23 А, устанавливается вручную. Ток отсечки (срабатывание при КЗ) – 297 А.

В принципе, ручной пускатель и мотор-автомат – это одно и то же устройство. Но пускателем, показанным на фото, можно коммутировать питание двигателя. А мотор-автомат постоянно подает питание (три фазы) на контактор, который, в свою очередь, коммутирует питание двигателя. Короче, разница – в схеме подключения.

Плюс схемы – можно регулировать уставку теплового тока. Минус тот же, что и в предыдущей схеме – нет дистанционного включения.

Схема подключения двигателя через магнитный пускатель

Этой схеме подключения трехфазного двигателя надо уделить самое пристальное внимание. Она наиболее распространена во всем промышленном оборудовании, выпускавшемся примерно до 2000-х годов. А в новых китайских простеньких станках используется и по сей день.

Электрик, который её не знает – как хирург, не умеющий отличить артерию от вены; как юрист, не знающий 1-ю статью Конституции РФ; так танцор, не отличающий вальс от тектоника.

Три фазы на двигатель идут в этой схеме не через автомат, а через пускатель. А включение/выключение пускателя осуществляется кнопками “ Пуск ” и “ Стоп ” , которые могут быть вынесены на пульт управления через 3 провода любой длины.

Пример такой схемы – в статье про восстановление схемы гидравлического пресса, см. последнюю в статье схему, пускатель КМ0. Про выбор, устройство и характеристики электромагнитных пускателей (контакторов) – прочитайте здесь.

5. Схема подключения двигателя через пускатель с кнопками пуск стоп

Здесь питание цепи управления поступает с фазы L1 (провод 1) через нормально замкнутую (НЗ) кнопку “Стоп” (провод 2).

Если теперь нажать на кнопку “Пуск”, то цепь питания катушки электромагнитного пускателя КМ замкнется (провод 3), его контакты замкнутся, и три фазы поступят на двигатель. Но в таких схемах кроме трёх “силовых” контактов у пускателя есть ещё один дополнительный контакт. Его называют “блокировочным” или “контактом самоподхвата”.

Когда электромагнитный пускатель включается нажатием кнопки SB1 “Пуск”, замыкается и контакт самоподхвата. А если он замкнулся, то даже если кнопка “Пуск” будет отжата, цепь питания катушки пускателя всё равно останется замкнутой. И двигатель продолжит работать, пока не будет нажата кнопка “Стоп”.

Поскольку тема с магнитными пускателями очень обширная, она вынесена в отдельную статью Схемы подключения магнитного пускателя. Статья существенно расширена и дополнена. Там рассмотрено всё – подключение различных нагрузок, защита (тепловая и от кз), реверсивные схемы, управление от разных точек, и т.д. Нумерация схем сохранена. Рекомендую.

Подключение трехфазного двигателя через электронные устройства

Все способы пуска двигателя, описанные выше, называются Пуск прямой подачей напряжения. Часто, в мощных приводах, такой пуск является тяжелым испытанием для оборудования – горят ремни, ломаются подшипники и крепления, и т.д.

Поэтому, статья была бы неполной, если бы я не упомянул современные тенденции. Теперь всё чаще для подключения трехфазного двигателя вместо электромагнитных пускателей применяют электронные силовые устройства. Под этим я подразумеваю:

  1. Твердотельные реле (solid state relay) – в них силовыми элементами являются тиристоры (симисторы), которые управляются входным сигналом с кнопки либо с контроллера. Бывают как однофазные, так и трехфазные. Вот моя статья.
  2. Мягкие (плавные) пускатели (soft starter, устройства плавного пуска) – усовершенствованные твердотелки. Можно устанавливать ток защиты, время разгона/замедления, включать реверс, и др. И на эту тему есть статья. Практическое применение устройств плавного пуска – здесь.
  3. Частотные преобразователи – самое совершенное устройство, что придумало человечество для подключения электродвигателя. Описывать частотники – дело не одной статьи.

Преимущества таких устройств очевидны (прежде всего – отсутствие контактов как таковых), недостаток пока один – цена. А вот как может выглядеть схема их включения:

10. Подключение трехфазного двигателя – общая схема с электронной силой

Двухскоростные электродвигатели

Старый специфический способ подключения двухскоростных двигателей описан в статье Подключение двухскоростных асинхронных двигателей.

На этом заканчиваю, спасибо за внимание, всего охватить не удалось, пишите вопросы в комментариях!

Скачать

Если тема интересует более глубоко, рекомендую ознакомиться с литературой, приведенной на странице Скачать.

Вот одна из книг, приведенных там:
• Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. / Ломоносов, В.Ю.; Поливанов, К.М.; Михайлов, О.П. Электротехника. Одна из лучших книг, посвящённых основам электротехники. Изложение начинается с самых основ: объясняется, что такое напряжение, сила тока и сопротивление, приводятся указания по расчёту простейших электрических цепей, рассказывается о взаимосвязи и взаимозависимости электрических и магнитных явлений. Объясняется, что такое переменный ток, как устроен генератор переменного тока. Описывается, что такое конденсатор и что собой представляет катушка индуктивности, какова их роль в цепях переменного тока. Объясняется, что такое трёхфазный ток, как устроены генераторы трёхфазного тока и как организуется его передача. Отдельная глава посвящена полупроводниковым приборам: в ней речь идёт о полупроводниковых диодах, о транзисторах и о тиристорах; об использовании полупроводниковых приборов для выпрямления переменного тока и в качестве полупроводниковых ключей. Коротко описываются достижения микроэлектроники. Последняя треть книги целиком посвящена электрическим машинам, агрегатам и оборудованию: в 10 главе речь идёт о машинах постоянного тока (генераторах и двигателях); 11 глава посвящена трансформаторам; о машинах переменного тока (однофазных и трёхфазных, синхронных и асинхронных) подробно рассказывается в 12 главе; выключатели, электромагниты и реле описываются в главе 13; в главе 14 речь идёт о составлении электрических схем. Последняя, 15 глава, посвящена измерениям в электротехнике. Эта книга — отличный способ изучить основы электротехники, понять основополагающие принципы работы электрических машин и агрегатов., zip, 13.87 MB, скачан: 1628 раз./

• Пуск и защита двигателей переменного тока / Пуск и защита двигателей переменного тока. Системы пуска и торможения двигателей переменного тока. Устройства защиты и анализ неисправностей двигателей переменного тока. Руководство по выбору устройств защиты. Руководство от Schneider Electric, pdf, 1.17 MB, скачан: 1256 раз./

Как подключить трехфазный двигатель 380 в однофазную сеть 220

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 – 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.

Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» – для 380 В или на «треугольник» – на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
-обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» – понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» – обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».

Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника.

Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.

Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам:

  1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
    режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
    как следствие увеличенного тока в обмотке.
  2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
    /- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
    может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
    к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
    стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
    напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
    ненагруженного двигателя можно обойтись только рабочим конденсатором.

Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле:
Cмкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.

У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому подходу я не призываю, просто информация для размышления. Кроме того, если включить 160-ти вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.

Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска, затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно- графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.

Читайте также  Почему нет компрессии в двигателе?

Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Включение 3-х фазного двигателя в однофазную сеть, от теории к практике

В домашнем хозяйстве иногда возникает необходимость запустить 3х фазный асинхронный электродвигатель (АД). При наличии 3х фазной сети это не составляет трудностей. При отсутствии 3х фазной сети двигатель можно запустить и от однофазной сети, добавив в схему конденсаторы.

Конструктивно АД состоит из неподвижной части – статора, и подвижной – ротора. На статоре в пазах укладываются обмотки. Обмотка статора представляет собой трёхфазную обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах с угловым расстоянием 120 эл. градусов. Концы и начала обмоток выводятся в соединительную коробку. Обмотки образуют пары полюсов. От числа пар полюсов зависит номинальная частота вращения ротора двигателя. Большинство общепромышленных двигателей имеют 1-3 пары полюсов, реже 4. АД с большим числом пар полюсов имеют низкий КПД, больше габариты, поэтому используются редко. Чем больше пар полюсов, тем меньше частота вращение ротора двигателя. Общепромышленые АД выпускаются с рядом стандартных скоростей вращения ротора: 300, 1000, 1500, 3000 об/мин.

Ротор АД представляет собой вал, на котором находится короткозамкнутая обмотка. В АД малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями отливают короткозамкнутые кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности обмотку выполняют из медных стержней, концы которых соединяют с короткозамкнутыми кольцами при помощи сварки.

При включении АД в 3ф сеть по обмоткам по очереди в разный момент времени начинает идти ток. В один период времени ток проходит по полюсу фазы А, в другой по полюсу фазы В, в третий по полюсу фасы С. Проходя через полюса обмоток, ток поочередно создает вращающее магнитное поле, которое взаимодействует с обмоткой ротора и заставляет его вращаться, как бы подталкивая его в разных плоскостях в разный момент времени.

Если включить АД в 1ф сеть, вращающий момент будет создаваться только одной обмоткой. Действовать на ротор такой момент будет в одной плоскости. Такого момента не достаточно, чтоб сдвинуть и вращать ротор. Чтобы создать сдвиг фазы тока полюса, относительно питающей фазы, применяют фазосдвигающие конденсаторы рис.1.


Рис.1

Конденсаторы можно применять любых типов, кроме электролитических. Хорошо подходят конденсаторы типа МБГО, МБГ4, К75-12, К78-17. Некоторые данные конденсаторов приведены в таблице 1.

Если необходимо набрать определенную емкость, то конденсаторы следует соединить параллельно.

Основные электрические характеристики АД приводятся в паспорте рис.2.


Рис.2

Из паспорта видно, что двигатель трехфазный, мощностью 0,25 кВт, 1370 об/мин, есть возможность менять схему соединения обмоток. Схема соединения обмоток «треугольник» при напряжении 220В, «звезда», при напряжении 380В ,соответственно ток 2,0/1,16А.

Схема соединения «звезда» изображена на рис.3. При таком включении к обмоткам электродвигателя между точками АВ (линейное напряжение Uл) подводится напряжение в раза больше напряжения между точками АО (фазное напряжение Uф).


Рис.3 Схема подключения «звезда».

Таким образом линейное напряжение в раза больше фазного напряжения: . При этом фазный ток Iф равен линейному току Iл.

Рассмотрим схему соединения «треугольник» рис. 4:


Рис.4 Схема соединения «треугольник»

При таком соединении линейное напряжение UЛ равное фазному напряжению Uф., а ток в линии Iл в раза больше фазного тока Iф: .

Таким образом если АД рассчитан на напряжение 220/380 В, то для его подключения к фазному напряжению 220 В используется схема соединения обмоток статора «треугольник». А для подключения к линейному напряжению 380 В – соединение «звезда».

Для пуска данного АД от однофазной сети напряжением 220В нам следует включить обмотки по схеме «треугольник», рис.5.


Рис.5 Схема соединения обмоток ЭД по схеме «треугольник»

Схема соединение обмоток в выводной коробке показана на рис. 6


Рис.6 Соединение в выводной коробке ЭД по схеме «треугольник»

Чтобы подключить электродвигатель по схеме «звезда» необходимо две фазные обмотки подключить непосредственно в однофазную сеть, а третью – через рабочий конденсатор Ср к любому из проводов сети рис. 6.

Соединение в выводной коробке для схемы «звезда» изображено на рис. 7.


Рис.7 Схема соединения обмоток ЭД по схеме «звезда»

Схема соединение обмоток в выводной коробке показана на рис. 8


Рис.8 Соединение в выводной коробке ЭД по схеме «звезда»

Емкость рабочего конденсатора Ср для данных схем рассчитывается по формуле:
,
где Iн— номинальный ток, Uн— номинальное рабочее напряжение.

В нашем случае, для включения по схеме «треугольник» емкость рабочего конденсатора Cр = 25 мкФ.

Рабочее напряжение конденсатора должно быть в 1.15 раз больше номинального напряжения питающей сети.

Для пуска АД не большой мощности обычно достаточно рабочего конденсатора, но при мощности более 1.5 кВт двигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применить еще пусковой конденсатор Сп . Емкость пускового конденсатора должна быть в 2.5-3 раза больше емкости рабочего конденсатора.

Схема соединения обмоток электродвигателя, соединенных по схеме «треугольник» с применением пусковых конденсаторов Сп представлена на рис. 9.


Рис.9 Схема соединения обмоток ЭД по схеме «треугольник» с применением пусковых конденсатов

Схема соединения обмоток двигателя «звезда» с применением пусковых конденсаторов представлена на рис. 10.


Рис.10 Схема соединения обмоток ЭД по схеме «звезда» с применением пусковых конденсаторов.

Пусковые конденсаторы Сп подключают параллельно рабочим конденсаторам при помощи кнопки КН на время 2-3 с. При этом скорость вращения ротора электродвигателя должна достигнуть 0.7…0.8 от номинальной скорости вращения.

Для запуска АД с применением пусковых конденсаторов удобно применять кнопку рис.11.


Рис.11

Конструктивно кнопка представляет собой трехполюсный выключатель, одна пара контактов которого замыкается, когда кнопка нажата. При отпускании контакты размыкаются, а остальная пара контактов остается включенной, до тех пор, пока не будет нажата кнопка стоп. Средняя пара контактов выполняет функцию кнопки КН (рис.9, рис.10), через которую подключают пусковые конденсаторы, две остальных пары работают как выключатель.

Может оказаться так, что в соединительной коробке электродвигателя концы фазных обмоток выполнены внутри двигателя. Тогда АД можно подключить только по схемам рис.7, рис. 10, в зависимости от мощности.

Существует еще схема соединения обмоток статора трехфазного электродвигателя — неполная звезда рис. 12. Выполнение соединения по данной схеме возможно, если начала и концы фазных обмоток статора выведены в соединительную коробку.


Рис.12

Подключать ЭД по такой схеме целесообразно, когда необходимо создать пусковой момент, превышающий номинальный. Такая необходимость возникает в приводах механизмов с тяжелыми условиями пуска, при пуске механизмов под нагрузкой. Следует отметить, что результирующий ток в питающих проводах превышает номинальный ток на 70-75%. Это необходимо учитывать при выборе сечения провода для подключения электродвигателя

Емкость рабочего конденсатора Ср для схемы рис. 12 рассчитывается по формуле:
.

Емкости пусковых конденсаторов должны быть в 2.5-3 раза больше емкости Ср. Рабочее напряжение конденсаторов в обеих схемах должно быть в 2.2 раза больше номинального напряжения.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого следует взять любой из 6 наружных выводов электродвигателя и присоединить его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1 ,а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их С2 и С5, а начало и конец третьей — С3 и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигатели согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим электродвигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную часто­ту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке следует поменять местами выводы С1 и С4. Если это не помогает, концы первой обмотки необходимо вернуть в первоначальное положение и теперь уже выводы С2 и С5 поменяйте местами. То же самоё сделайте; в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов обмоток строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора АД, включенного в однофазную сеть по схеме «треугольник» (см. рис.5), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения АД, включенного в однофазную сеть по схеме «звезда» (см. рис.7), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний, шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, и смазать их.